Pyruvate formate-lyase activating enzyme: elucidation of a novel mechanism for glycyl radical formation.
نویسندگان
چکیده
Pyruvate formate lyase activating enzyme is a member of a novel superfamily of enzymes that utilize S-adenosylmethionine to initiate radical catalysis. This enzyme has been isolated with several different iron-sulfur clusters, but single turnover monitored by EPR has identified the [4Fe-4S](1+) cluster as the catalytically active cluster; this cluster is believed to be oxidized to the [4Fe-4S](2+) state during turnover. The [4Fe-4S] cluster is coordinated by a three-cysteine motif common to the radical/S-adenosylmethionine superfamily, suggesting the presence of a unique iron in the cluster. The unique iron site has been confirmed by Mossbauer and ENDOR spectroscopy experiments, which also provided the first evidence for direct coordination of S-adenosylmethionine to an iron-sulfur cluster, in this case the unique iron of the [4Fe-4S] cluster. Coordination to the unique iron anchors the S-adenosylmethionine in the active site, and allows for a close association between the sulfonium of S-adenosylmethionine and the cluster as observed by ENDOR spectroscopy. The evidence to date leads to a mechanistic proposal involving inner-sphere electron transfer from the cluster to the sulfonium of S-adenosylmethionine, followed by or concomitant with C-S bond homolysis to produce a 5'-deoxyadenosyl radical; this transient radical abstracts a hydrogen atom from G734 to activate pyruvate formate lyase.
منابع مشابه
Structural basis for glycyl radical formation by pyruvate formate-lyase activating enzyme.
Pyruvate formate-lyase activating enzyme generates a stable and catalytically essential glycyl radical on G(734) of pyruvate formate-lyase via the direct, stereospecific abstraction of a hydrogen atom from pyruvate formate-lyase. The activase performs this remarkable feat by using an iron-sulfur cluster and S-adenosylmethionine (AdoMet), thus placing it among the AdoMet radical superfamily of e...
متن کاملConversion of 3Fe-4S to 4Fe-4S Clusters in Native Pyruvate Formate-Lyase Activating Enzyme: Mössbauer Characterization and Implications for Mechanism
Pyruvate formate-lyase activating enzyme utilizes an iron-sulfur cluster and S-adenosylmethionine to generate the catalytically essential glycyl radical on pyruvate formate-lyase. Variable-temperature (4.2200 K) and variable-field (0.05-8 T) Mössbauer spectroscopy has been used to characterize the iron-sulfur clusters present in anaerobically isolated pyruvate formate-lyase activating enzyme an...
متن کاملStructure and mechanism of the glycyl radical enzyme pyruvate formate-lyase[6]
The enzyme pyruvate formate-lyase (PFL) catalyzes the reversible conversion of pyruvate and CoA into acetyl-CoA and formate, which has a central role in anaerobic glucose fermentation by E. coli cells and other bacteria [1]. PFL a 2 × 85 kDa homodimer is the first example of a radical enzyme where the spin was found to be located on the polypeptide backbone Cα-atom of a glycyl residue (Gly 734)...
متن کاملPyruvate formate-lyase mechanism involving the protein-based glycyl radical.
Pyruvate formate-lyase (also called formate acetyltransferase; EC 2.3.1.54; PFI .) catalyses the thiolytic cleavage of pyruvate by CoA, yielding acetyl-CoA and formate. This reaction is the key step in the glucose-fermentation route in Escherichziz coli and various other bacteria. Operationally, it resembles the (B-keto)thiolase reaction of the fatty-acid degradation cycle. The mechanism of pyr...
متن کاملPost-translational activation introduces a free radical into pyruvate formate-lyase.
Pyruvate formate-lyase (formate acetyltransferase; EC 2.3.1.54) of Escherichia coli cells is post-translationally interconverted between inactive and active forms. Conversion of the inactive to the active form is catalyzed by an Fe2+-dependent activating enzyme and requires adenosylmethionine and dihydroflavodoxin. This process is shown here to introduce a paramagnetic moiety into the structure...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Archives of biochemistry and biophysics
دوره 433 1 شماره
صفحات -
تاریخ انتشار 2005